
N E T W O R K S U P E R V I S I O N

Application
Troubleshooting Guide

Table of contents

Introduction . 2

Background . 2
The TCP Protocol . 4

The Life of a Packet . 6

Other Troubleshooting Factors . 7

Why UDP is so Different . 8

Why is Understanding Troubleshooting Important 9

Application Flow . 13
The Amazing Sequence of Events in Connecting

to a Server . 13

DHCP . 15

DNS Lookups . 16

ARP Broadcasting . 21

The Route to the Server . 24

Establishing the Connection to the Server . 26

Sender/Receiver Interaction . 30

 The Flow of Data . 32

 Closing the Connection . 40

Understanding How Applications Fail . 42

 Failures with DNS . 42

 Failures with ARP . 44

 Failures with Routing . 47

 Problems in Establishing a Connection . 51

 Slow Responses from Servers . 53

 Closing the Connection . 54

Troubleshooting Applications . 55
Baselining . 56

Five Key Steps to Successful Application Troubleshooting 58

 Determine the domain of the problem and

 exonerate the network . 58

 Validating Connectivity to the Application Server 65

 Determine the Network Path . 70

 Application Flow Analysis . 74

 Using OptiView® Protocol Expert . 78

 Fix the Problem . 85

 Validate the Fix . 86

 Document the Fix . 86

Case Studies . 87

 Case Study 1: Obtaining Switch Statistics . 87

 Case Study 2: Investigating WAN Link Performance 89

Summary . 91

www .flukenetworks .com1

Fluke Networks 2

Guide to Troubleshooting Application Problems

Introduction
Controversy began early on when computers were connected to

each other and programmers began to write applications that

sent information back and forth between them. The controversy is

whether the apparent slowness in performance of the application

is due to how the program is executing, or the slowness in the

network. When networks were first used, links were very slow when

compared to direct connections between computers, printers and

disk drives. So, networks often were blamed for the waiting time

for the system to produce output.

However, today’s networks operate at vastly higher speeds. When

users get frustrated with the performance of an application, it is

difficult to isolate whether the lack of performance is in the pro-

cessing in the network attached devices, or in the network itself.

In this document, we will address this problem. In order to do

this we will need to discuss how applications work. In particular,

we will focus on how they use or fail to use the network. This will

include both failure to send information in a timely manner and

failure to respond to requests coming from the network. We’ll

also give you a guide in what to look for when troubleshooting

applications.

Background
Companies have become almost totally dependent on computers

to conduct their business. How many times have you been in a

retail store or government office and heard a staff member say,

“We can’t help you because the system is down.” Companies

depend on computers for a variety of tasks. Revenue and

expenditures are recorded in transaction processing systems.

www .flukenetworks .com3

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Background

Orders are taken and inventories are adjusted in similar systems.

Most written communications are now done by email rather

than by letters that are typed and mailed. Even instant written

communications such as instant messaging is moving from fad

status to serious message communications where business is

negotiated and deals are closed.

Beginning about 2000, businesses began to seriously evolve

voice communications over to data networks with VoIP (Voice over

IP). Most communications carriers and a majority of large enter-

prise companies use VoIP exclusively for voice messaging. With

the explosion of YouTube and Internet TV, video is beginning to

come into enterprise networks as well. Very recently, a new area

is collaboration. Under the label of Web 2.0, it represents a group

of tools that allow users to share and exchange voice, data and

video for the purpose of collaborating on projects. These tools

and services are rapidly becoming popular with lawyers, marketing

groups, consulting firms and service providers such as architects

and engineers.

In TCP/IP networks, applications can be distinguished by

the protocol over which they run. Nearly 90% run over TCP

(transmission control protocol). That is, they send and receive

their messages in packets that have been built by TCP. The other

10% use the UDP (user datagram protocol). These two protocols

were devised nearly forty years ago but have proven to be

extremely robust and enduring. While modifications in TCP have

been made over the years, its essential operation has remained

almost constant. In our document we’ll focus on TCP applications,

Fluke Networks 4

Guide to Troubleshooting Application Problems

since they represent the large majority of the instances in which

users are reporting slowness in application performance.

The TCP Protocol
If you segment the traffic on a corporate network into categories

determined by the purpose of that traffic, you would probably

find a break down something like this: email (10%), transaction

processing (25%), http web traffic (35%), broadcast and control

(10%) and other traffic (20%). The only part of the mix that is

based primarily on UDP is in the “other” category. The remainder

use mostly TCP.

TCP is designed to be adaptive to the network. This means when it

works on behalf of the application,

it modifies how it is interacting with

the network. This is based on how

the network seems to be respond-

ing to the requests and commands

it is sending into the network. If

the network seems to be fast, it will

become more aggressive in sending

information. If it senses a slow-

down or problem with packets being

dropped, it will quickly decrease the

rate at which it sends packets.

TCP is based on a well documented algorithm (formula or opera-

tional procedure). However, individual operating systems such as

Microsoft® Windows® XP and a particular version of Linux make

TCP has three main functions:

(1) It handles the rate of flow

between the two end applica-

tions. (2) It assures reliability

for the delivery of all data. (3)

It provides for the detection of

errors and correction of data by

using retransmission of packets

that are corrupted or dropped.

www .flukenetworks .com5

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Background

slight variations in how they implement the algorithm. A detailed

understanding of the algorithm is not necessary to troubleshoot

a network. Yet, its effect is profound and later, we’ll see some

examples of how it works.

The adaptive nature of TCP is what makes it very useful. It can be

used over 56 kbps dial-up links and 10 Gbps links. The application

programmer doesn’t have to deal

with that significant difference in

link speeds - TCP deals with it. On

the other hand, this adaptive nature

of TCP means that slowness in the

application performance might be the

way the application is coded or the

way in which the application interacts

with the network. If the applica-

tion processing is slow, the data to

be transmitted isn’t sent to the TCP

stack in a timely manner. This also

means TCP can’t deliver packets to the

network. In the other case TCP senses

a slow network and decreases the rate at which it offers packets to

the network.

So, when TCP is the protocol being used, both network problems

and server problems are hidden by TCP’s adaptive nature.

Figure 1

IP Network

Transport

Application

Figure 1 TCP Holds the Application
and Network Together

Fluke Networks 6

Guide to Troubleshooting Application Problems

The Life of a Packet
Let’s consider a relatively simple model of client/server interaction

where TCP is being used. Let’s say we have data to send from the

client to the server. (It works almost identically when the server

sends data to the client.) The client application creates a block

of data and sends it to the TCP software in the client’s computer.

It’s placed in an output buffer and timers are started that

are associated with that block of data. TCP finds out from the

operating system how much data it can send in each outgoing

TCP block called a segment. Usually it is 1460 bytes maximum.

This segment is delivered to the IP software and the IP addresses

of the sender and receiver are added. Then the IP software

contacts the operating system to say an outgoing message is

ready to be sent. When the operating system gives the okay,

the outgoing packet is moved to the network interface card (NIC)

to be sent. In this entire process, the performance of the client

processor is critical to how fast this all can take place.

After the packet is sent from the interface card, the network

performance is the critical factor. Packets can follow a short, fast

route, a slow, long route or any combination of links. It is common

for a packet to traverse 10-20 individual network links when going

over an Internet connection. Like the adage about the strength

of a chain depending on the weakest link, the speed through the

network depends on the slowest link. More often than not, the

slowest link is the access link into the network and the egress link

out of the network.

www .flukenetworks .com7

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Background

At the server, the TCP segment is received on the NIC, delivered

to the IP software and the process described above is reversed.

During this process, it is the speed of the processing in the server

that affects how quickly the data is received and the acknowledge-

ment is prepared to be sent back.

In conclusion, there are three critical phases necessary for the

successful delivery of the application message to the server’s

application:

1. Processing of the message in the client to prepare it to be sent.

2. Network delivery.

3. Processing in the server when the message arrives.

Other Troubleshooting Factors
There are some other things that make it difficult to troubleshoot

TCP applications. The TCP protocol isn’t very well understood. Just

recently information about TCP’s operation has begun to appear

in networking textbooks and industry whitepapers. Yet, it is the

single layer of the seven layer model which has a significant

influence on the performance of the application-to-network

interface. Because it isn’t well understood, network engineers and

technicians usually don’t look at it as a source of explaining what

is causing a problem. Often, they look at server configurations,

cabling issues, or system memory as explanations when actually

these have little relationship to the underlying problem.

Fluke Networks 8

Guide to Troubleshooting Application Problems

Also, TCP isn’t an especially efficient protocol. For years, data

communications experts considered an overhead amount of 20%

or more to be excessive. But, TCP routinely operates with 50% or

more overhead when the actual application data bytes and the

total bytes are used to calculate the overhead.

Finally, as we will learn later in this document, TCP reacts very

aggressively to packets that are dropped within the network.

When a single packet is dropped, a file transfer may decrease its

delivery rate by 70% or more.

Why UDP is so Different
While we won’t examine UDP in detail in this paper, it is worth-

while to consider how it compares with TCP. That will amplify what

we have learned about TCP.

UDP makes no provision for flow control, error detection or correc-

tion, or the reliability of data delivery. These responsibilities are

pushed up to the application. Therefore, since UDP involves much

less processing, poor performance is more often dependent on the

performance of the network or the slowness of the processor unit.

If the processor is slow, other applications will show the same

slowness. This makes the isolation of the cause of slowness less

complicated than in the case of TCP applications.

www .flukenetworks .com9

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Background

Why is Understanding Troubleshooting
Important
When applications appear to be slow, frustrated users waste time

and energy. Slow applications cause lost time which, in turn,

means lost money. Also, IT staff time is misspent. In some

instances, help desk or PC analysts expend much of their time

rebooting client stations or checking IP configurations and

cabling connections.

When an effort is made to learn about troubleshooting applications

and the skills are applied to the system to improve the perfor-

mance of both the network and the applications, it’s an investment

in the company. It pays off in dividends the same way that saving

on shipping costs, reducing fuel consumption or eliminating any

other inefficiency, pay off.

But troubleshooting TCP applications isn’t easy. Unlike voice or

video, which are typically UDP based, application performance

degradation isn’t obvious. If the sound is bad or the TV screen

shows distortion, everyone sees it immediately. But with TCP

applications like transaction processing systems, performance

tends to be judged based on how the system behaved yesterday.

If it is slower today than it was yesterday, users begin to

complain. Even worse, if the application degrades slowly, the

change may not be detected at all and the company begins to

lose money through the inefficiency.

Fluke Networks 10

Guide to Troubleshooting Application Problems

Understanding Types of Applications

There are many examples of applications that will fall under our

scrutiny. Web applications include both applications that actually

communicate over the Internet and any that use a browser such

as Internet Explorer® or Firefox.® The latter are often called

web enabled applications. It is becoming more common for

applications to be described as “browser-based.” This generally

means that the user begins by opening a browser and connecting

to the server application from within that browser window. Most

of us have used these applications when we do on-line banking,

order a movie, or reserve an airline ticket. What is important to us

is that the underlying traffic will be transmitted between the client

and the server using HTTP (hypertext transfer protocol) or HTTPS

(secure hypertext transfer protocol). Both of these are TCP based

application program interfaces.

SQL (structured query language) applications involve calls from

a client application to a server database application for records

or tables from a SQL database. These can be, or don’t have to be,

web enabled and use HTTP or HTTPS. For example, the client

application can present a result to a user that asks for a field to

be completed on the screen. After filling in a value, it is sent to

the server to do a computation. The server takes the result and

determines that another record needs to be returned to the

client. All of this interaction takes place under the control of the

TCP protocol and will be affected by TCP’s operation, the individual

processors’ performances and the network’s performance.

Closely associated to database activity are transaction processing

systems. These often overlap SQL database applications.

www .flukenetworks .com11

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Background

In transaction processing systems, the emphasis is on taking

relatively small amounts of data and doing a calculation in a short

period of time. ERP systems that have individual components such

as an accounts payable module, inventory module, or order entry

module are examples of transaction processing systems. When a

user changes a customer’s telephone number, a transaction has

occurred. The data to make such a change and the information

that shows that the change occurred are transferred between

the client and the server under the control of TCP.

Imaging systems, such as those that inventory photos or x-rays,

are also very often TCP based. They are usually very large files and

moving them from a server to a client is a bulk transfer. Such bulk

transfers are the reason TCP was originally designed. One major

application program interface that is used to do this is FTP

(file transfer protocol). It can be executed from the command

line, from within a file transfer program or from within a browser.

A user clicks on a thumbnail of the image they want to view and

the FTP protocol is invoked to retrieve the image from the server.

FTP is one of the best examples of simple application of the TCP

protocol. The client identifies the file to be retrieved (in this case

an image), and a separate connection is opened for the transfer.

The emphasis in the operation is to send as much data as possible

as quickly as the network can handle it. These applications can

saturate links on networks more quickly than almost any other type

of application. As a result, they appear to be more sensitive to the

method of operation dictated within TCP. Small network problems

become very evident in a file transfer, especially if it is a large file.

Fluke Networks 12

Guide to Troubleshooting Application Problems

Data warehousing systems are also dependent on bulk file

transfers. A data warehouse is generally considered to be a highly

organized, indexed repository of a company’s electronic documents.

When a document needs to be retrieved, the client application

indicates the document or documents or parameters that uniquely

define the information needed. When the server application

receives this information, it retrieves the information and sends

it as a bulk file transfer. Consequently they are nearly always TCP

based. And, as a result, they behave very much like other file

transfer based processes.

While VoIP payload is transferred between the phones using UDP,

the call set-up often uses TCP. In the exchange that takes place

when a phone goes off-hook, only small amounts of data are

transferred. However, the process can involve ARP, DNS and the

other process that typically define a connection to a server.

Poor performance or failure in this connection won’t affect the

quality of the call. It will be apparent in the time it takes to make

the connection or the lack of signaling tones to which we have

become accustomed. For example, the user might dial but not hear

either a busy signal or a ringing tone.

Another category of applications that use TCP are CRM
(customer relationship management) systems. They are usually

a combination of transaction oriented and database systems.

They also depend on TCP.

Before we delve more deeply into the application flow process,

we need to consider one more item.

www .flukenetworks .com13

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

Application Flow

We’re going to consider six issues that affect application flow:

1. DNS lookups

2. ARP resolution

3. Establishing the TCP connection

4. Sender/receiver (interaction)

5. Data flow

6. Closing the TCP connection

In this section we will not consider UDP applications because they

typically represent 15% or less of the traffic on the network and

it is easier to isolate the cause of the poor performance. We will

discuss UDP later in the paper.

The Amazing Sequence of Events in
Connecting to a Server
Very few of us ever stop to consider what is actually taking

place when we click on an icon that tells our application to get

something from a server. But understanding the process can be

very helpful. Let’s start when our user sits down at their desk to

begin working with the application. We’ll assume the computer was

turned off over night and the first thing they want to do is check

the company’s home page for notifications about weather related

cancellations.

Fluke Networks 14

Guide to Troubleshooting Application Problems

Here is a typical sequence:

1. Computer off.

2. Computer powered up.

3. OS loaded, NIC detected.

4. TCP/IP stack checked: IP address, mask, default router
 (gateway) and DNS server known.

5. If DHCP is enabled, the DHCP server is contacted to receive
 these values.

6. User indicates to start connection to server (e.g. open IE).

7. IE request is created for the default home page
 (e.g. www.google.com).

8. IP software looks up a DNS server IP address
 (which we assume is not local).

9. IP software sends ARP request to local net to get MAC address
 of router.

10. The router receives the broadcast, recognizes that it is the
 target of the query and sends a response containing its MAC
 address onto the network as a broadcast.

11. IP software sends IP packet with DNS request to router,
 which forwards to DNS server.

12. DNS server returns IP address for www.google.com.

13. TCP/IP stack sends connection request to server at Google.TM

14. Network delivers connection request.

15. Connection established.

16. (Story to be continued later).

www .flukenetworks .com15

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

It’s rather easy to see that there is much that can go wrong.

We’ll be referring back to this sequence later in our discussion.

With the dependence that companies have on TCP based

applications, we now turn our attention to the six phases of

the TCP connection between the client and server applications.

DHCP
There are two ways a user can make sure that a client has the

appropriate configuration parameters to connect to the network.

One way is to assign the values through the operating system.

In Windows,® a screen in the Network Settings allows entry of the

IP address, subnet mask, default router, and DNS server.

On the other hand, in the same window, the user can check the

radio buttons to obtain these automatically. In this case, the

dynamic host configuration protocol (DHCP) will be used.

Figure 2 illustrates the process.

client server

DHCPREQUEST

DHCPOFFER

DHCPDISCOVER

DHCPACK

Figure 2 DHCP Process

Fluke Networks 16

Guide to Troubleshooting Application Problems

To begin, the client sends a local broadcast indicating it needs

service from a DHCP server. This frame is called a DHCP Discover.

Typically, all DHCP servers that hear the broadcast will respond

with a broadcast, which is called a DHCP Offer. The offer will

contain the configuration parameters the client needs. More than

one offer may be received since there may be multiple DHCP

servers. The client chooses one of the offers by sending a broad-

cast called a DHCP Request. The servers that sent the offers that

weren’t accepted realize they are no longer part of the process.

The server that made the accepted offer completes the assignment

of the parameters by sending a broadcast called the DHCP

Acknowledgement.

In the event that the DHCP server is on a different network than

the client, the local router that separates their networks must

know to forward DHCP broadcasts. This forwarding action is called

DHCP relay. Routers do not normally forward broadcasts.

DNS Lookups
Before, we briefly mentioned DNS. But now let’s consider it in

more detail. DNS refers to both the protocol domain name services

and the device called the domain name server. While it seems to

contain a redundancy, a DNS server is a domain name services

server. The purpose of DNS is to match IP addresses of hosts to

the name that resides in that host. For example, if Apple Baker

Company, Inc. has the domain name abc.com registered with the

Internet community and they have also registered the address

221.221.13.0, we say that abc.com maps to 221.221.13.0.

221.221.13.0 <-> abc.com

www .flukenetworks .com17

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

When a process queries with a name and learns the associated

address, we say the name was resolved. Most often names are

resolved to provide the address. However, it is sometimes

necessary to resolve the address to learn the name. This is known

as a reverse lookup. DNS server can do both of these. The DNS

server is a computer with a stored table that contains the mapping

(or association) of many names and IP addresses. Note that the

DNS table does not contain the hardware addresses of the device

that has a particular IP address. That’s in a different table and

we’ll consider that later.

In the sequence of events on page 14, the client browser knew the

home page was www.google.com. In steps 10 and 11, you see that

the client browser asked to be connected to the server at GoogleTM

But the client’s TCP/IP software didn’t know the IP address for

www.google.com. As a result a query was sent to the DNS server

and the IP address was returned.

On some rare occasions, another method is used to resolve names

to addresses. Clients will store a host name table. This table acts

like a local DNS table and also the administrator of the local

computer to create fixed, permanent associations between names

and IP addresses. This is occasionally used in manufacturing

operations where there is a need, or desire, to avoid a name server.

This technique is not adequate for situation where the user might

connect to the public Internet because the names that need to be

resolved are unpredictable.

Fluke Networks 18

Guide to Troubleshooting Application Problems

Now that we know something about how DNS works, let’s consider

what can go wrong. First, it is important to understand that

applications are rarely written to send messages or data to an

IP address. It is almost always sent to a server with a name.

So, DNS is almost always invoked. Second, the address of the DNS

server that is configured in the client or offered by DHCP is often

the wrong server or one that isn’t easily reached as in Figure 3.

If it is the wrong server, the name query will be relayed to another

server, and potentially to more servers until it reaches one that

can resolve the name. Consequently, to the client application,

it appears the query was handled slowly by the local DNS server,

when, in fact, the query was resolved by a device that was much

further away. In addition, for efficiency and redundancy purposes,

many large enterprises have many DNS servers. In one large

university, there are ten DNS servers. Users are emailed a list and

they may pick two to configure their client. In a case like this, the

likelihood that the user picks the best two servers, assuming there

are two best, is less than 3%! So, in most cases if there are many

DNS servers, you can probably assume the best two haven’t been

configured in the client.

www .flukenetworks .com19

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

Figure 3 The Location of DNS

The packet that contains the query name is called a command.

The response, coming from the DNS server that contains the IP

address, is called the response. In Figure 4 you can see three DNS

commands and three corresponding responses.

DNS Serverclient

Figure 3

Local Network

Ideal

DNS query

client DNS Server
Remote NetworkInefficient

DNS query

14 router hops

Local Network

Fluke Networks 20

Guide to Troubleshooting Application Problems

Figure 4 DNS Commands and Responses

So, in conclusion, DNS can be slow due to network slowness,

improper or poor choice of DNS server, or a lost query. In the

latter case, usually the client automatically sends a second or third

request after it times out on the first request. DNS can also fail,

if the query contains a name that can’t be recognized or if no

DNS server can be found. Of these two possibilities, the second is

more common because the administrator of the computer lists a

nonexistent DNS server or provides an invalid address in the TCP/IP

configuration. For example, you might be surprised by how many

users configure their TCP/IP stack by inserting the company’s email

or web server in the DNS server field.

www .flukenetworks .com21

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

ARP Broadcasting
ARP (address resolution protocol) is used when a device knows

the IP address but doesn’t know the MAC address of the same

device. In our description of connection to the server on page 14,

step 9 indicates what happens. The client was configured with the

IP address of the router. But sending the packet requires the MAC

(hardware) address of the device. The ARP broadcast contains

the query and the response to the query fills the need and the

addresses are resolved. When the client learns the MAC address,

it will temporarily store it in a table called its arp cache

(it is not common to use upper case letters in this case.)

Figure 5 The ARP Command

Figure 5 shows the arp table of a client. This table is available in

Windows® clients by typing the command arp –a on the command

line. The entries in the arp table are usually stored for about

two minutes in Windows.® Then it is discarded. Other operating

systems store the entries for different lengths of time. All operat-

ing systems supporting TCP/IP will have such a table. The arp table

is a good place to look to first to see if a device knows the address

of a particular local station. It is important to remember that the

arp table contains only devices from the local network (subnet).

Fluke Networks 22

Guide to Troubleshooting Application Problems

Devices beyond a router will not be listed because they are on

another network.

Another view of this problem is illustrated here:

 IP A <--> IP B

MAC x MAC y

Suppose the device with IP address A wants to send a message to

the device with IP address B. It knows its own MAC address but not

the MAC address of the other station. Its application directed the

message to be sent to IP address B. Or, possibly, its application

directed it be sent to a name at B and DNS provided the IP address

B. Either way, it still needs the MAC address of B to complete its

task. ARP will be invoked and the entry B and y will be added to

the arp table for temporary storage.

The ARP protocol is a necessary part of TCP network (in the case

of IPv4). ARP is also used for some more discretionary tasks.

Sometimes referred to as discovery techniques, ARP is used when

a device like a server wants to see who is actually on a local

network. By sequentially sending an ARP query to every possible

address and then watching who responds, it can build a list of

devices that are actually functioning on the network. Windows®

browsing and many network troubleshooting tools implement this

technique.

Figures 6 and 7 show an ARP query and the corresponding

response.

www .flukenetworks .com23

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

Figure 6 The ARP Query

Figure 7 The ARP Response

The Internet standard that specifies the ARP protocol also makes

provision for a process called reverse ARP. This allows a device to

broadcast a MAC address to find out who has the corresponding IP

address. While it might seem this could be useful, it is rarely used

in practice.

Fluke Networks 24

Guide to Troubleshooting Application Problems

The Route to the Server
Suppose that the client has now obtained the IP address of the

server and knows it isn’t on the local network. The client also

knows the MAC address of the router. The client has a connection

request that needs to reach the server. Of course it will send it to

the router which will in turn forward it to another router, and so

forth until it arrives at the router on the server’s local network.

Keep in mind, that when it reaches the destination network, that

router may need to invoke ARP to get the server’s MAC address.

But how many steps (links) will the connection request pass

through and how fast and reliable is each link? And, is the route

selected the optimal route? Usually that is determined by two

things: how the network was designed and what routing protocol

was used. If a particular link is slow and was used to create the

path from the client to the server, a response to the connection

request will be slow. Had a faster link been used to create the path

the response will be quicker.

In today’s IP networks, routers establish a set of links between

the potential sending and receiving networks using a routing

protocol. Investigating how such protocols work is beyond the

scope of this document, but it is important to understand a few

things that are common to all routing protocols. First, they are

dynamic and automatic. That is, they will build a set of links

among themselves so that all devices can be reached by other

devices. Second, they periodically update each other so that if a

link fails, a new set of paths are created. Finally, they all make

provisions for static routes, or routes that are manually created and

www .flukenetworks .com25

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

remain fixed under all circumstances. Consequently, the choice of

the route from the client to the server is made by the network

and not the client or the server. Some routing protocols allow

routers to select links based on the quality of the links. Other

routing protocols use only the criterion of how many links remain

to the destination network.

Probably the most widely used tool for investigating the route

between two devices is the application trace route, which is built

into nearly all TCP/IP stacks. While we’ll discuss trace route later,

it is helpful to look at the output created by using it. In Figure 8

you can see that the route to new.networkprotocolspecialists.com

was traced from the host that issued the command. Each line that

is numbered shows a routing device that the trace route packets

followed. The next three entries after the router number are the

measurements of time it took to traverse the link to that router.

So, for example, between the device in step 5 and the device in

step 6, it took 49 ms., 9 ms., and finally 10 ms. to reach the router

at 207.88.83.141.

Figure 8 Trace Route

Fluke Networks 26

Guide to Troubleshooting Application Problems

Establishing the Connection to the Server
The method of creating the connection for all TCP applications

is the same. It is widely known as the three-way handshake.

Here’s what happens.

Before data can be transferred over the connection, certain

parameters of operation must be agreed upon by the sending and

receiving TCP software modules. Recall that TCP is responsible for

flow control, reliable delivery, and error control. In order to agree

on how this will be handled, each TCP stack exchanges certain

information during this three-way handshake. For example, in order

to establish the maximum number of bytes that will be permitted

in each packet, the sender includes a statement of the intended

MTU (maximum transmission unit). While this is normally 1460

bytes, it isn’t mandatory that value be used. If the other TCP

module receives this indication and doesn’t like the value and

thinks it should be lower, it simply doesn’t acknowledge that it

received it. The sender must take the hint and lower the value.

A second thing that must be established is how many bytes the

receiver can receive in total in its receive buffer. This value, called

the window advertisement, is also indicated in the first packet

exchanged in the handshake. The other end records this value and

any adjustments it receives so that it never overwhelms its partner

with too much data. The exchange of these two values provide for

flow control.

Another value that must be established is the point at which each

end will begin to count bytes of data. This is a random value called

the initial sequence number and each announces their value in the

first two steps of the handshake. From that initial value, every

www .flukenetworks .com27

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

byte of data transferred increases the sequence value by exactly

one. So, for example, if the initial sequence number for a device

is 36,100,000 and it transfers 50 bytes of data, the next sequence

value it will use is 36,100,050.

Figure 9 The Three-way Handshake

Now, let’s get back to the three-way handshake. We’re assuming

the client is opening a connection with the server. As we discuss

this you can refer to Figure 9, which shows the process. Again, its

purpose is to exchange these values and acknowledge that they

were received. The first step in the process is for the client device

connection request to send a packet to the server called the SYN

packet (SYN is short for synchronization. They are synchronizing

values). That packet contains several important numbers and

indicators. First it contains the port number for the process

(application) it wants the connection to be with.

Fluke Networks 28

Guide to Troubleshooting Application Problems

Port numbers for server processes generally are well-known or

registered. That means that everyone agrees on which application

process the number is associated with. For example, email often

uses ports 25 or 110. HTTP uses port 80. There are hundreds of

others. It’s a good idea to learn most of the common ones. Like

so many other network topics, using your favorite search engine

and the phrase “TCP port numbers” will lead you to many lists that

are available. In this step, the client will normally use a randomly

chosen port. Windows® often selects a value in the range of 2000-

2500.

The SYN packet also contains the sender’s window advertisement.

Also, it contains a request for the maximum transmission unit

(MTU). Finally, it indicates the fact that it is a SYN packet by

setting a single bit equal to one. That particular bit is never set

to one unless SYN is being indicated.

In the second step in the three-way handshake, the server sends

a response called the SYN/ACK packet to the client. It contains

its window advertisement, initial sequence number and the port

numbers of the two application processes. It also takes the

sequence number it received, increases the value by one and

returns it as its acknowledgement value. This is how it tells the

other TCP entity that it is now synchronized to its sequence

numbers. It will also change the value of a single bit, the

acknowledgement bit to one. Therefore, in its packet both the

SYN bit and the ACK bit are one and that is why the packet is

called the SYN/ACK packet.

www .flukenetworks .com29

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

In the third and last step of the handshake, the client sends

a packet with the sequence number increased by one (That’s

cheating because it didn’t actually send data bytes. It’s the only

exception to the rule about sequence numbers.) This third packet

allows the client to acknowledge that it received the server’s

acceptance of the opening of the connection. The connection is

now prepared to allow data to flow between the two applications

represented by the port numbers.

A common metric of performance of the network application is the

round trip time (RTT). This is the time from when the SYN is sent

and the SYN/ACK is returned. This value is one of the things the

sending TCP stack uses to determine how much data should be

offered to the network. If the RTT is low, the network appears to

be fast. If the RTT is high, the network or the server appears to

be slow and the TCP stack will adjust accordingly.

In Figure 10, an HTTP Get command is sent to the server in the

first step. 65 ms. later that packet is acknowledged. This time

is the RTT. It is important to note that this value isn’t the

application response time. This is the acknowledgement of the

TCP protocol in the server. The application responds in the third

step shown in Figure 10.

Fluke Networks 30

Guide to Troubleshooting Application Problems

Sender/Receiver Interaction
The most common model for interaction in the TCP/IP environ-

ment is the client server model. In this model, the client makes a

request for some form of service and the server fulfills this request.

For example, the client browser may request the objects on a home

page. An ERP client may request a field from within a data record

on the server. As illustrated before, a client process may invoke FTP

to receive a large file. In each case, the client is making a request

that it hopes the server will fulfill. The server applications that

fulfill these requests are sometimes called services. So, we may say

that a particular service is or isn’t available on the server. The way

a client knows whether or not a service (process) is available is

by the response to the SYN packet. If the server responds to the

SYN with a SYN/ACK, it is informing the client that the service is

available. For example, that’s why requests for web pages are sent

to port 80. That port identifies a server that is acting as a web

server. While it might also act as an email server, if it doesn’t

respond to SYNs sent to port 25, it is informing the client it

doesn’t do email services using the SMTP (simple mail transfer

protocol) system. That service is not available.

So, after a connection is established, a client makes a request

for information. Say the request is for a web page element. The

server may acknowledge receipt of the request with an ACK packet

containing no data. Then, it may send the file containing the

requested information. In fact that is what is being illustrated

in Figure 10.

www .flukenetworks .com31

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

Figure 10 A Request and the Response

TCP acknowledgements are governed by a fairly complicated set

of rules. However, there is a basic set of behaviors we need to

understand. First, not every packet needs to be acknowledged.

The TCP stack, written for the operating system involved, may

implement a procedure in which every packet is acknowledged,

only occasional packets are acknowledged, or some combination

of the two rules. What is rather typical of all TCP stacks is that

data is sent in a TCP segment and then the receiver waits until

one of two things occurs. Either it receives another segment, or

200 ms. transpire. If the 200 ms. pass and no additional segments

are received, it will acknowledge the one it received. If a second

or third segment is received, it may acknowledge them at any

point that it is ready to do so. Sometimes when the packets are

examined, you will see a very homogeneous pattern: two segments

sent, acknowledgement received, two more sent, acknowledgement

received and so forth.

Fluke Networks 32

Guide to Troubleshooting Application Problems

However, sometimes, acknowledgements will be received while the

sender is sending a block of four or more segments. The behavior

of the receiver – to wait 200 ms. to see if there is more data-is

called delayed acknowledgement. Its purpose was to cut down on

the number of acknowledgements. But it has become controversial

because it affects the senders estimate of the real RTT.

The Flow of Data

TCP has a long list of rules that the sending and receiving

protocol software must follow. The method used in the complete

implementation of the protocol is beyond the scope of this

document. However, here are a few of the rules that help in

understanding the relationship between how TCP behaves and

the network performance:

•	 Delayed	acknowledgements,	described	above.

•	 If	packets	are	received	out	of	order,	the	last	segment	isn’t	

 acknowledged until the missing segments are received. Rather,

 the last segment that was received in order is acknowledged.

•	 If	a	sender	doesn’t	receive	an	acknowledgement	of	a	segment,	

 it doesn’t immediately resend the segment. (It could still be

 in transit). Instead, it waits until it receives three duplicate

 acknowledgements of the previously received segment.

 At that point it assumes the next segment was lost and

 proceeds with the retransmission. Since this is often before

 a time out on the segment has occurred, the policy is called

 fast retransmission.

www .flukenetworks .com33

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

•	 It	uses	a	technique	called	slow start. In this procedure one or

two segments are sent and the acknowledgements are awaited.

If they return quickly, the sender increases the block size (that is,

the number of segments it sends simultaneously). It will continue

to increase the block size until one of two things happens: either

there is a time out because an acknowledgement isn’t received

(such as when a segment has been discarded) or the total data

sent is one-half the receiver’s advertised window value.

Let’s consider some examples. Suppose the sender has a hundred

or so segments of data to transmit. We show the interaction in

Figure 11. However, rather than complicate things by using the

actual acknowledgement values, we simply use consecutive

integers that correspond to the number of blocks of data.

Step one starts after the three-way handshake has been completed

and the client is ready to up load its information. The client sends

a frame and awaits an acknowledgement. The acknowledgement

returns quickly as Ack1. In step 2, because the client’s TCP stack

is using slow start and it has received one acknowledgement, it

now increases the send group to two segments and sends segment

2 and segment 3. Again, the server responds quickly with Ack3.

In step 3, it increases the outgoing group size to 4 because it

received acknowledgements for two more segments. It sends all

four segments. Once again, the server quickly responds with

Ack7, assuring the client that it received all four segments.

Fluke Networks 34

Guide to Troubleshooting Application Problems

1

Figure 11: TCP Ideal Flow

client

time

2

server

1

3

4

Ack 1

2

3

4

7

8

Ack 12

Ack 3

Ack 7

12

}

Figure 11 TCP Operation

www .flukenetworks .com35

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

At this point we make an assumption. Let us suppose that

by sending the four segments, the receiver’s incoming buffer

became more than half full. That is, assume that the client has

sent enough information that the next window advertisement from

the server will be less than half what it started out as. In this

case, the client is not allowed to increase its send group by 4,

to total 8 out-going segments. That would overfill the receiver’s

buffer. So, in this new phase of the operation, the client increases

the group size by one segment at a time. Therefore, it increases

the number of outgoing blocks to five. If that succeeds, it will

increase to six, and so forth. Of course, this entire scenario is

subject to whether the server is able to completely empty its

incoming buffer upon each transmission. We have assumed that

is the case. Later, we’ll consider an example where that isn’t true.

This example points out several important features of applications

that are using TCP. First, they will appear to adapt to the speed

of the network. If the response of the server and the speed of the

network are both good, TCP sends more and more data until either

the link or the recipient has been saturated with information.

Second, TCP operation is more complex than is generally thought.

It is important to keep in mind that this is a very simplified

explanation of how a very complex algorithm works.

Let’s consider a less than ideal situation. This one may surprise

you. In Figure 12 we see the client beginning to transfer data

to the server in the same manner as before. However, this time,

we’ll assume a single segment is lost.

Fluke Networks 36

Guide to Troubleshooting Application Problems

1

2

3

Figure 12: TCP Lost Segment

client

time

2

server

1

3

4

Ack 1

Ack 3

Ack 5

4

8

5

6

7

x

7

Ack 5

9

Ack 5

6

Ack 9

}

}

}

}

10

Figure 12 A Dropped Segment

www .flukenetworks .com37

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

In step 1, the client sends segment 1 and the server quickly

responds with Ack1. In step 2, using slow start, the client sends

two blocks of data and the server quickly responds with Ack3.

In step three, again because of slow start, the client sends four

segments, segments 4, 5, 6 and 7. But segment 6 is discarded

by the network. When the server receives segments 4, 5 and 7,

it doesn’t acknowledge receipt of 7. Instead, it acknowledges

segment 5, the last one that was successfully received in order.

In step four, the client has received Ack5 but isn’t sure if six was

lost or is still wandering around the network waiting to arrive. So,

the client sends just segment 8. Since, segment 6 isn’t wandering

around but has been lost, the server quickly acknowledges receipt

of data but it acknowledges segment 5 again with Ack5. In step

5, the client still isn’t permitted to assume that segment 6 is lost

so it again sends one segment, segment 9. The server sends Ack5

again. Finally, because the client has received three duplicate

acknowledgements (steps 3, 4 and 5), it is permitted to assume

that segment 6 has been lost and it retransmits that segment.

Now that the server has segments 4 though 9, it sends Ack9. As

illustrated in the final step, the client continues as it begins and

sends segment 10. It will continue to implement slow start with

sending succeeding segments.

This illustration showed some rather remarkable facts. First,

because a single frame was dropped, the sending TCP entity

reacted very strongly by cutting back to sending one frame at a

time until the problem was resolved by the retransmission. Keep in

mind that if the segments each contained 1000 bytes, for example,

this reaction may have been caused by a single bit error!

Fluke Networks 38

Guide to Troubleshooting Application Problems

This clearly demonstrates that TCP does not behave well in error

prone environments such as those created by wireless or poorly

cabled networks. When comparing the first and second examples,

it was clear that a single bit error could reduce the throughput by

thousands of bytes in the time interval illustrated.

Our third example involves a clean network but a severely over-

whelmed server. It’s illustrated in Figure 13.

1

2

3

Figure 13: TCP flow: slow server

client

time

2

server

200 ms.

230 ms.

280 ms.

1

3

4

}

}

}

Ack 1

Ack 3

Ack 5

4

5

6

7

Figure 13 Overwhelmed Server

www .flukenetworks .com39

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

The client begins by sending a single segment in step 1. In order

to comply with delayed acknowledgement, the server waits 200

ms. to see if more data will arrive. It does not. So, it sends Ack1.

In step 2, the client increases the outgoing buffer to two segments

and sends segments two and three. The server’s reaction is

important to understand. If the server were quickly processing

the incoming data, it would respond on or before the 200 ms.

wait time. Instead, the server uses 230 ms. to acknowledge that

it received the two segments. Then it sends Ack3. In step three,

the client’s calculation of round trip time (RTT) tells TCP that this

situation involves either a slow network or slow server. One of

the two is not operating optimally. So, rather than increase its

outgoing number of segments as it did in the other examples, the

client sends two segments again, segments four and five. In step

3, the server is still operating sub optimally, so it takes it 280 ms.

to determine that it received two more segments. Then the server

sends Ack5. In the final step illustrated, step 4, the client still

realizes the RTT is high, so it proceeds to send only two segments

again. After these segments are delivered, if the server would

happen to increase its performance (maybe it was busy with

another large computational task), the RTT would be a lower value.

The client’s calculation would indicate that it can increase the

number of simultaneous segments it is sending.

This example points out an additional important point. A subtle

point is illustrated by the fact that the client never aggressively

increased the number of segments being simultaneously sent. This

indicated slowness somewhere. The turn-around time at the server

Fluke Networks 40

Guide to Troubleshooting Application Problems

was high and indicated inability to keep up with the rate at which

it was receiving data. It was obvious that the server was the issue.

We have seen from these three examples, that TCP is a complicated

process. However, it has certain core features that help us

to isolate where problems are located. We should point out here,

that in a real world analysis, the block numbers would be replaced

by sequence and acknowledgement numbers that are often eight

or more characters in length, rather than the single digit block

numbers used in these examples. This means that the analysis

of a capture file that is being analyzed may take considerable time.

This could be the main reason that network engineers tend to

avoid this deep inspection to search for problems. Yet, such

inspection is analogous to the medical doctor who orders an MRI.

It can be very revealing. With practice and good network trouble-

shooting tools, you can become very proficient in such analysis.

Throughout our discussion, we have illustrated one-way transfers

of data. TCP is a full-duplex protocol. That means it is designed to

allow for simultaneous flows in both directions. In practice, this

isn’t done very often. We think the half-duplex flows that have

been illustrated not only simplify the illustrations but are more

likely to be what you will encounter.

Closing the Connection

After the data relevant to the session has been exchanged, TCP

indicates that it is finished by using a method that is often called

the four-way handshake. Each end must close the connection

independently. So, in our illustration, we’ll suppose the client

initiates the sequence because it is responsible for starting the

www .flukenetworks .com41

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

session. The client will send a segment that usually doesn’t

contain data, but has a single bit in the TCP header set to one.

That bit is called the FIN bit. The server will acknowledge that

segment. Then the server will send a segment to the client with

the FIN bit set to one. The client will acknowledge that segment.

This is illustrated in Figure 14.

Ack m

server

Data delivery complete

FIN

Connection closed

Ack m

FIN

Ack n

Figure 14: TCP flow: closing the connection

client

time

1

2

3
4

Figure 14 Closing the Connection

It is important for applications to properly close a connection.

At both ends, this action tells the operating system that the

resources that had been used such as input buffers, timers, and

sequence values are no longer needed. The operating system is

then free to use the resources for other activities.

Fluke Networks 42

Guide to Troubleshooting Application Problems

In some of the early implementations of TCP applications, the

connection was closed by issuing a segment with the RESET bit set

to one. While the other TCP stack might see this as an indication

the session was over, it might also correctly interpret it as an

indication that the timers and sequence numbers were confused

and needed to be corrected. Issuing resets occasionally causes

servers to retain resources for the TCP session long after they are

no longer being used by the applications. Of course, nearly the

same thing might be expected if the FIN segment were to be lost.

But in this case, the other end would not acknowledge receipt of

the FIN segment and it would eventually be retransmitted. So, the

four-way handshake is the proper way for a session to be closed.

Understanding How Applications Fail

Failures with DNS

In order to understand how DNS can fail we need to look more

closely at how it works. When a client wants to make a request

of a server, it usually has the name of the server such as

www.psu.edu or www.flukenetworks.com. DNS is a distributed

database that stores the names and the corresponding IP

addresses. The database in DNS is a hierarchical tree which

denotes two things. First, every node (DNS server) is above or

below another DNS server. Second, there is a single path between

any two servers. The nodes close to the root of the tree are called

root servers. They keep track of who knows all the names in their

own branch which is below them. This can be seen in Figure 15.

For example, the .com server knows who is responsible for a name

like flukenetworks.com because the suffix is .com. Likewise, the

node flukenetworks.com knows who can resolve names containing

support.flukenetworks.com.

www .flukenetworks .com43

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

Figure 15

root

.biz.org.edu
.com

.CompanyName.com

support.CompanyName.com

Figure 15 The DNS Structure

When a client application needs the address of a server, its DNS

software called the resolver creates a query and forwards it to

the local DNS server. The local DNS server is normally listed in

its IP configuration. If the local DNS server knows the address

corresponding to the name, the server returns it and we say the

name has been resolved. If the local DNS server does not know the

name, it has two choices: forward the query up the tree to the

next DNS server or ask each server successively going up the tree

to resolve the name on its behalf. Either way this takes time and

slows the connection attempt. When the query reaches the root,

the root will know how to resolve the name or will know which

other root server can resolve the name. If the name can’t be

resolved, the response to the query will indicate the failure. At

that point, the client’s attempt to connect to the server will fail.

One common cause of failures in DNS is network configuration

errors. Another common mistake that causes failures is mistyping

the name. For example, typing www.flukenetwork.com will cause a

DNS failure because the “s” is missing.

Fluke Networks 44

Guide to Troubleshooting Application Problems

Failures with ARP

Remember that ARP is the protocol that is used by a station that

needs to communicate with an IP address but doesn’t know the

local hardware address. Probably the two most common failures

with ARP are duplicate IP addresses and incorrect configuration of

the default gateway. If a user or other administrator of a computer

assigns an address to their NIC that is already in use by someone

else on the network, ARP tables in the network may have conflict-

ing information in them. While each TCP/IP stack is permitted

to handle ARP entry caching in their own manner, some use only

entries they query for, while others use anything they hear from

sending the query/response combination.

ARP can lead to problems caused by a device using the wrong

subnet mask. Suppose a client and server are both on the same

network 111.111.0.0 as in Figure16. If the mask is supposed to

be 255.255.0.0 but the client is incorrectly configured to use

255.255.255.0, a problem is created. When the one phone wants

to send a VoIP frames to the second, it will ARP for the router’s

address because it believes the second phone to be on a separate

network. The router will respond with its own MAC address and the

frames will be sent to the router. The router will relay the frame to

the second phone. Computing cycles on the router are being used

but the router should not have been involved in the exchange.

www .flukenetworks .com45

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

router

Figure 16

111.111.111.111/16 111.111.112.112/24

Figure 16 Unnecessary Routing

Proxy ARP is a protocol used to make devices that are on a sepa-

rate LAN appear to be on the same LAN. It has many applications

including configuring serial links, placing multiple IP addresses

on a single interface of a server, and configuring firewalls. For

example, a firewall could be configured to proxy ARP for two

servers that were behind it. While the addresses of the servers

would make it appear they were on the network, they are actually

protected by the firewall. This is illustrated in Figure 17.

Fluke Networks 46

Guide to Troubleshooting Application Problems

Figure 17

server 1 server 2

firewall

Where is
Server 1?

Here I
am!

Figure 17 Proxy ARP

In this case when a station wants to communicate with Server 1,

it will send an ARP broadcast. The firewall will respond with a

unicast response. This creates the impression in the station that

the firewall is, in fact, Server 1. Network administrators like this

technique because it completely hides the fact that the two

servers are on a separate, protected network.

But proxy ARP is prone to being misconfigured. Especially in the

case of servers that need multiple IP addresses on a physical NIC

and in cases where it is used in mobile IP applications.

On some occasions configuration mistakes can lead to incorrect

ARP responses. Consider the example in Figure 18. Suppose the

server has been accidentally configured with the incorrect address

www .flukenetworks .com47

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

for the router as shown. If a packet arrives on the WAN interface

of the router and is destined to the server, the router will send an

ARP query for the server’s address to get the correct response and

the data frame will be sent correctly to the server. However, when

the server decides to respond, it will decide the response needs to

be routed and it will ARP for the router. But the ARP request will

be for 192.168.0.2 and upon receipt of the response, the servers

response will go to the wrong device. In all likelihood, the

response will die at that point.

192.168.0.1/24

Figure 18

router

192.168.0.2/24/

192.168.0.3/24
router = 192.168.0.2

Figure 18 No Return Packet

Failures with Routing

Unfortunately, issues with poor or incorrect routes are common.

Most often they are a result of administrative errors in configuring

the network. Occasionally, the routing protocol being used leads

to the problem. It may seem surprising that many low cost routers

Fluke Networks 48

Guide to Troubleshooting Application Problems

and most servers that act as routers use the RIP (routing informa-

tion protocol). That protocol is over thirty years old. Routers and

servers that use the protocol choose the destination path based on

the number of hops (links between routers). However, no provision

is made to assess the speed or throughput of a link. Consequently,

links might be in a path that is very slow when an alternative path

is not being used. The best way to spot a slow link is probably to

use a tool like trace route. In Figure 8 (page 25) you can see that

link 8 had a higher than normal RTT with 88 ms. While that may be

an aberration, repeated use of trace route might confirm that it is

always the slow link.

One factor that can be important is the network router discarding

packets. Among routers, there is no provision for retransmission.

So, the client or the server must determine that the routers have

discarded packets. When they do, they will generally retransmit the

packets. But you will recall that we pointed out that this retrans-

mission can happen significantly later and cause TCP to slow down

its rate of delivery by a large factor. So, why would routers discard

packets? There are two main reasons. First, a packet arrives at a

router and it is corrupted. That is, it has been damaged and the

router detects that some information it contains is incorrect.

It won’t try to determine the correct information. That would

use valuable processor cycles. It discards the packet. In certain

instances, it will send a packet called an ICMP (Internet Control

Message Protocol) packet back to the source indicating the

discard. But the packet is lost. The second thing that can happen

is that the router simply becomes too congested (that is, busy).

Nearly all routers will reach a threshold where they begin to

www .flukenetworks .com49

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

randomly discard traffic in order to do as much correct routing as

they can. Again, the impact on TCP applications in the client or

the server can be devastating.

Printing problems are often associated with routing errors. For

example, if a client is logged into a server that is on the other side

of a WAN link, but chooses to print to a local printer, the print file

may go across the WAN link to the print spooler (queue). When

the printer is available, the file will return across the WAN link to

reach the printer. This is a remarkably common occurrence and

usually creates slow printing because WAN links tend to have

limited bandwidth.

Another common problem results when devices on a network

with a multi-homed router are misconfigured. Look at Figure 19.

The network administrator originally had the phones with

addresses ending .1 through .126 on one network. When the

administrator ran out of addresses he decided to add the range

from .130 through .190 by giving the router a second address

192.168.0.129 with a 26 bit mask. Apparently the users at .5

and at .83 found out that the user at .133 had a 26 bit mask.

They proceeded to dig out the manual from a pile of papers on

their desk and look up how to change the phone configuration.

They changed their configuration to be consistent with the phone

at .133. This will introduce a series of possible problems. If the

phone is smart enough to discover the misconfiguration, it may

do what a Windows® client would do. In the case .83, the phone

would indicate that the configured default router (.1) is not on the

local network.

Fluke Networks 50

Guide to Troubleshooting Application Problems

However, devices such as phones have a very limited operating

systems. It is much more likely that the phone will allow the

configuration to be activated. In this case, traffic between .5

and .83 will be routed. If the router is not overworked, this

misconfiguration could be hidden for years. However, when the

router becomes overly congested with bursty traffic, it could

begin to drop packets in calls between these two stations.

router

192.168.0.5/26 192.168.0.83/26 192.168.0.133/26

Figure 19

192.168.0.1/25
192.168.0.129/26

Figure 19 Incorrect Configuration

Packet loss along the route can be hidden. For example, suppose

a pair of layer two switches are connected directly by a fiber or

twisted pair connection. Because no other devices except the

switches are normally monitoring such a link, bit errors can occur

that cause the link to corrupt data frames. This problem will be

dealt with by the end stations. If the applications that are

losing the frames are TCP based, the effect will be significant.

If the administrator of the network is using the link for VoIP

transport, minor frame loss will not likely be evident in the quality

of the calls. This can cause the administrator to search elsewhere

www .flukenetworks .com51

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

for the cause and miss the actual source of the degradation in

performance. Other causes of packet loss can be an over subscribed

quality of service technique, bad NIC cards in routers, or

intermediate wireless links (such as wireless bridges).

Problems in Establishing a Connection

Applications communicate between ports. In fact, in TCP and

UDP discussions, we say the TCP session is defined or uniquely

characterized by these four parameters: the sending IP address,

the sending TCP port number, the receiving IP address, and the

receiving TCP port. Programmers refer to the set of four parameters

along with the protocol as a socket. These four values

(IP address A, port x) <--> (IP address B, port y)

uniquely identify the logical communications channel between the

client and the server.

client server

IP A IP B

Figure 20

APPLIC APPLIC APPLIC APPLIC APPLIC APPLIC APPLIC APPLIC APPLIC APPLIC

IP Destination Address B
IP Source Address A
Source Port X
Destination Port Y

Figure 20 Defining a Session

Fluke Networks 52

Guide to Troubleshooting Application Problems

For example, in the three-way handshake, the client sends the SYN

packet from IP address A listing port x as the source port. In the

packet the client also lists the destination as IP address B (server)

and port y (the application). As we described previously, the

operating system in each device needs to allocate memory for the

operation of the session being established. These four values are

the tags used to identify the exchange. Note that a single server,

such as an email server, can use port 25 as part of a set of

thousands of different sessions, so long as the client port or

client address changes in each instance.

Occasionally, a client application will attempt to connect to a

port that is not available on a server. We say the port is not open.

If this happens, most TCP stacks will tell the source of this

occurrence by sending an ICMP packet indicating this. However,

most client devices will ignore the report and the user will not

make the connection. If someone or some device is attempting to

discover which ports are active on the server by scanning ports,

you may see a sudden increase in the amount of ICMP traffic on

your network. Scanning is a process in which a SYN packet is

sent to each possible port number in succession. For example, a

scanning utility might send successive SYN packets to 191.168.0.5:

1025, 191.168.0.5: 1026, 191.168.0.5: 1027, and so forth. Here

we have used the common notation to show the port number

behind the IP address separated by a colon.

There are generally two sources for scanning activities: good guys

and bad guys. Among the good guys are network troubleshooting

tools with functions built in that will scan the ports of a host in

order to see if the host has the correct ports open.

www .flukenetworks .com53

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Application Flow

Most servers have several open ports which represent services

it will provide. For example, a server with ports 25 and 80 open

would be available to provide email and web page serving. If the

server actively announces these services, we say it advertises the

services. So, often a network support tool will scan the network to

see which devices have open ports and then send a SYN to verify

the status of the port. Among the bad guys are hackers that are

attempting to do reconnaissance on your network. They also want

to know which devices are servers and which ports are open.

But it isn’t likely that they have honorable purposes.

Slow Responses from Servers

In the client-server relationship, when a client sends a request to

a server, it is usually represented by a packet that has a unique

format which is determined by the application program interface.

For example, with HTTP, when a client requests a home page or

part of a page from a web server, an HTTP GET packet is sent to the

server. It contains a significant number of parameters such as the

version of HTTP being used, the date and time, the file requested

and other values. The GET is sent only after the client and session

server has been established by the three-way handshake.

How quickly the service request is fulfilled may depend on several

factors. The server may be slow to respond because it needs to

compute something or search for the file. In the case of HTTP,

it may even send a response that indicates acknowledgement

of the request without supplying the file to fulfill the request.

It’s like saying, “I’m working on it.” The request may get lost or be

Fluke Networks 54

Guide to Troubleshooting Application Problems

discarded by the network. The same thing can happen to the

response. Finding the cause of server slowness is beyond the

scope of this document. However, later we will consider how to

spot signs that a server is over worked.

Closing the Connection

As we pointed out before, when we considered the operation of

TCP, the session is ended with the four-way handshake. The client

sends a FIN and the server acknowledges it. Then the server

sends a FIN and the client acknowledges that FIN. Occasionally,

one of the four frames of data is lost or discarded by the network.

If the FIN is lost, the corresponding acknowledgement isn’t

received and eventually the station will send it again. If the

acknowledgement is lost, the sender likewise eventually decides it

must be sent again. It might seem that this would not affect the

application performance since it appears to happen after the data

has been transferred. But that is incorrect. As an example, consider

when a web page is requested. It will typically contain eight to

twenty components such as a logo, a banner, a copyright notice,

a list of options to click on and other information. HTTP generally

transfers the page in individual TCP sessions. So, if the session to

retrieve the banner doesn’t close properly, it may prevent the

retrieval of the list of items that the user can click on. It will

appear as if the application is responding slowly.

Finally, as we mentioned in our previous discussion of closing the

connection, some poorly constructed applications and some older

versions of protocols, use the RESET packet to close a session.

www .flukenetworks .com55

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

This may force the operating system to keep memory resources

and times active when they are no longer needed. Keeping the

resources viable will take additional computational cycles from

the server and decrease its overall performance.

Troubleshooting Applications
Often troubleshooting is challenging and a “best” method isn’t

obvious. Some technicians use the few tools they are familiar with

to try to solve every problem. The adage, “When the only tool you

have is a hammer, everything begins to look like a nail, “ comes

to mind. In network troubleshooting, technicians who know the

physical level sometimes attempt to solve a problem with cable

testers and meters. Technicians who have an RF communications

background gravitate towards spectrum analyzers.

On the other hand, team members working on a problem may

each have a different view of the same problem. The systems

analyst will think of CPU performance, insufficient memory, and

fragmented disk space as the cause of the problem. The network

architect might see it as routing issues. Or, the manager of

network infrastructure might decide to test the WAN links for

throughput or replace copper links with fiber connections.

Good troubleshooting requires having a broad base of experience,

a solid knowledge of the technology involved, and the availability

of the proper tools.

Fluke Networks 56

Guide to Troubleshooting Application Problems

Baselining
One of the techniques that is used the least is baselining the

network. Yet, it is one of the most useful techniques. Baselining is

recording data based on the “normal” performance of the network.

By knowing how the network performs when users are satisfied,

you have a point of comparison when problems are reported. Have

the level of broadcasts gone up? Are there new protocols on the

network? Is utilization higher? Is the ERP application response

time slower? Questions like these are impossible to answer without

the corresponding data gathered under normal operating

OptiView® Analyzers: Portable
and Rack Models.

Fluke Networks’ OptiView Series III
Network Analyzers are available in two
form factors to give you a clear view of
your entire enterprise – providing visibility
into every piece of hardware, every
application, and every connection
on your network.

Choose the Integrated Network Analyzer
for portable, all-in-one analysis or the
Workgroup Analyzer for permanent or
semi-permanent deployment that acts

as a “virtual network engineer 24/7” in the core or at remote
sites. Or, use them together to create a powerful combination
– a troubleshooting tool for the access layer and an analyzer
watching the core, remote site or critical network point. Network
professionals can conduct all the necessary tests at the remote site
without ever leaving the headquarters site.

www .flukenetworks .com57

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

circumstances. This information is rarely provided by network

equipment manufacturers. So, network managers need to find time

in their schedules to record it when they aren’t under pressure.

Methodology

Selecting the right tools can be more challenging than it appears.

The more theoretically oriented engineer often wants a protocol

analyzer as their only tool. While it allows them to do a deep

analysis of the network in some circumstances, finding a failing

fiber optic cable or a network interface card that is out of

specification, may be nearly impossible. Yet, the engineer that

wants to avoid theory altogether might simply swap out compo-

nents until the problem disappears. This can take too much time

and lead to many discarded, expensive but perfectly functional

network components. Here are some points that may be helpful

as you approach a troubleshooting problem:

•	 Analyze	the	network	as	a	whole.

•	 Follow	a	logical	sequence	of	steps.

•	 Zero-in	on	the	root	source	of	the	problem	and	make	one	
 adjustment or change one part to eliminate the problem.

•	 Don’t	focus	on	completely	understanding	the	problem	until	after	
 the network is functioning properly.

•	 Provide	feedback	and	training	to	the	user.	It’s	good	diplomacy	
 and may eliminate user generated problems in the future.

Fluke Networks 58

Guide to Troubleshooting Application Problems

Five Key Steps to Successful Application
Troubleshooting
We will discuss each of these steps in succession:

1) Determine the domain of the problem and exonerate
 the network.

2) Conduct an Application flow analysis.

3) Fix the problem.

4) Validate the problem.

5) Document the problem.

Determine the domain of the problem and
exonerate the network .

This process involves three steps: (1) Validating network services;

(2) Validating connectivity to the server; and (3) Determining the

network path.

Validating Network Services. To validate network service, we

need to do two things. First, we must be sure that clients have

or are getting an IP address, subnet mask, default router address,

and DNS server address. On a Windows® client, you can use the

command line tool ipconfig to do this. If there isn’t an IP address

assigned to the client, it could be because there is a failure in the

connection to the DHCP server. From the command line, you can

issue the command ipconfig/release followed by ipconfig/renew.

this will cause the client to initiate the four step process to obtain

the configuration parameters from the DHCP server.

www .flukenetworks .com59

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

Using Fluke Networks OptiView, it’s much easier to test DHCP and

you get significantly more information. By placing the OptiView

at the point of connection used by the client and starting it, the

OptiView automatically does a Discovery process to find devices on

the network. That process includes obtaining an address for the

analyzer from DHCP as shown in Figure 21.

Figure 21 DHCP Response using OptiView

You can see that the test was successful and that the OptiView

received an IP address, mask, default router, DNS server, and a

seven day lease. You can also see that the process took a little

over one second, a fact that isn’t available from the command

line tools.

The second thing we must test is DNS. To see whether a client can

get names resolved we can again use two approaches. From the

Fluke Networks 60

Guide to Troubleshooting Application Problems

command line we can use nslookup.

The nslookup is a tool that is sometimes used to troubleshoot

domain name servers. Its use is somewhat controversial because

it is often used by hackers. It may not provide consistent results

because name servers are often restricted from responding to

nslookup queries. Yet, in competent hands that have good

intentions, nslookup is helpful.

It can be used to do a general query in a domain and it can be

used to specify a particular type of query. For example, if you type

nslookup and hit enter you may receive a result such as is shown

in Figure 22.

Figure 22 The nslookup Tool

The nslookup is a tool that tells us about servers, domains, and the

addresses of the servers. Often, there are subcommands that allow

querying about mail servers or exchange servers. Searching the

Internet for descriptions will provide a great deal of information.

www .flukenetworks .com61

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

An easier approach is to use the same screen that we used to

test DHCP. In figure 23 we can see that the OptiView has been

configured to resolve the name DBase02.appsvr04.fnet.com. The

test was successful and the IP address was returned in 140 ms.

By clicking on the edit button on the right any specific name can

be queried. By clicking on the Add DNS Server button, any specific

server can be tested.

Figure 23 DNS Test using OptiView

A test which we use less frequently is the reverse lookup.

By submitting an IP address, the DNS server should return the

corresponding server that uses that name. While the command line

tool nslookup can be used, you can add a reverse name lookup to

the OptiView by just entering the IP address in the screen that

pops up when you select a DNS Server and click Add. This is shown

in Figure 24.

Fluke Networks 62

Guide to Troubleshooting Application Problems

Figure 24 Adding a Reverse using OptiView

Device Connectivity. The ping command is so widely used, that

it has become part of our language. In networking, it has a very

specific meaning. It is a small application that sends a query

packet to a target device to see if the device will respond. For

security reasons, the device is sometimes not allowed to respond.

However, it remains the most widely used method of testing

connectivity.

From a command prompt, you can execute the command ping

x.x.x.x. This will cause your protocol stack to send a packet called

an ICMP echo request to the address you listed as x.x.x.x. Some

devices do not respond to pings and some firewalls block echo

requests. But if your echo request survives the journey and reaches

the target, the target device is likely to respond with another ICMP

packet called an ICMP echo response. Network administrators use

ping packets for many purposes. You do this by adding a switch

which is similar to a subcommand. Among other things you can:

see if a packet containing M bytes will get to the target (ping

with – l M switch), ping continuously until interrupted (-t switch)

www .flukenetworks .com63

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

and ping allowing up to N hops (ping – i N). You can see the first

of these illustrated in Figure 25. The continuous ping is usually

stopped with CNTL-C. While there are slight variations of the ping

command across different operating systems, most support the

usage described here.

Figure 25 Ping with Designated Payload

So, suppose we believe that we have a route that is dropping

packets that are over 1000 bytes because the MTU isn’t the

standard value 1460. We can send a ping that specifies a payload

of 900 bytes followed by a ping that specifies a payload of 1100

bytes. This will give us an indication. Keep in mind that this

depends on the fact that nothing in the path is blocking ICMP

packets for security reasons.

Ping connectivity tests are easy to configure and run in the

OptiView. In Figure 26 you can see the screen that appears when

you select a device on the Discovery screen and click on Device

Detail. From here you can run ping tests and other tests that we

will discuss later.

Fluke Networks 64

Guide to Troubleshooting Application Problems

Figure 26 Using OptiView

If you want to change the payload, run the test more or less

frequently, or limit the hop count, you can click on configure test.

Figure 27 Ping options

The result will be a report like the one in Figure 28 that tells us to

how fast the response came back and whether any of the packets

or responses were lost.

www .flukenetworks .com65

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

Figure 28 The Ping Report

Validating Connectivity to the Application Server

There are three tasks to be accomplished here. First, we should see

if we can connect to the application of interest. Second, we should

measure the response time of the application. Third, we should

check the vital statistics of the server.

Application Connectivity. As we discussed earlier, applications

communicate through ports. In particular, server applications use

well-known ports. Once the server has been selected, we can use

the same screen that we used to generate a ping test. The drop

down menu allows us to choose the TCP connectivity test. This is

shown in Figure 29.

Fluke Networks 66

Guide to Troubleshooting Application Problems

Figure 29 The TCP Connectivity Test

By clicking on the button labeled Configure Test, you can easily

select nearly every well known application process. This is shown

in Figure 30.

Figure 30 TCP Port Selection

We can attempt to open individual or multiple well known or

registered ports, or any user defined ports which may be necessary

www .flukenetworks .com67

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

for custom home-grown applications. The results of one such

connectivity test is shown in Figure 31.

Figure 31 Application Connectivity Test Result

Application Test. In order to see if the application is responding

adequately, we can use an Application Flow Analysis. After captur-

ing data during server transactions, the protocol decode overview

screen shown in Figure 32 appears. It shows that HTTP protocol

was used to conduct transactions between the client and several

servers. It also shows how many transactions (TCP sessions)

were opened, used and then closed. If we click on the server that

used HTTP, we get a list of servers that were involved in the

transactions using HTTP.

Each time we click on a server, we get a table of statistics about

the interaction with that server. This is shown in Figure 33. Finally,

if we click on the hyperlink that says how many transactions there

Fluke Networks 68

Guide to Troubleshooting Application Problems

were, we get a list of the transactions, a Bounce Chart and a

table of Transport Statistics about those transactions. From the

transport statistics we can see what the transaction was about

and how quickly the server responded. This is shown in Figure 34.

Figure 32 Server Overview Screen

Figure 33 HTTP Servers

www .flukenetworks .com69

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

Figure 34 Individual Transactions

OptiView also indicates when there is a server that isn’t responding

well. This makes the analysis much easier.

Server Statistics. Once you have isolated the server that appears

to be running too slowly, you can obtain server statistics though

a series of SNMP queries sent by the OptiView analyzer. The result

is a screen like the one shown in Figure 35 which indicates

processor load, number of users, memory and disk utilization

and a list of processes running on the server.

Fluke Networks 70

Guide to Troubleshooting Application Problems

Figure 35 Server Statistics

This will allow you to do an analysis on the server system

operation before determining that the slowness must be within

the application.

Determine the Network Path

We must be sure there is a path to the server that is running our

application. So, we need to make sure that both the layer two

switch path and the layer three router path is functioning

correctly. As we saw in the overview section, an incorrect path

can lead to increased server response time. This can result

form a variety of causes. The network routing topology may be

incorrect. A link may be down causing a back-up route to be used.

Or, a service provider may route traffic over unexpected paths.

We can determine the layer two and layer three routes within our

own network with a combination of a trace route procedure and

SNMP queries to switches. We can also use trace route outside our

network to discover the router path to the server.

www .flukenetworks .com71

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

From the command line of the operating system trace route (layer

3 only) is a utility that is actually an extension of the ping utility.

In Windows,® if you type the command tracert x.x.x.x, a series of

ping packets are sent to the target. In the first packet, the hop

count (TTL) is set to zero. Therefore, the first routing device that

receives the packet is required to discard it and report its action to

the source. Then the utility increases the hop count in the packet

to 1 and sends the ping. This packet passes thought the first

router. But that router is required to decrease the hop count by

one. So, when it arrives at the second router, the hop count

has been reduced to zero and the second router drops the

packet. However, like the first router, it reports to the source

that it dropped the packet. You can see what is happening.

Each successive ping packet goes one more hop. Also, each time a

packet is discarded, the source gets a report telling it who dropped

the packet. By using a timer on each ping, the source can build a

report like the one in Figure 36.

Figure 36 Trace Route

This creates a listing of the path that was followed from the source

to the target x.x.x.x. The trace route tool also gives us important

Fluke Networks 72

Guide to Troubleshooting Application Problems

Leveraging Netflow Data

NetFlow tracker harnesses flow
information from Cisco® IOS
NetFlow, and flow standards from
several other vendors, to give
users detailed network traffic
information from data already
in your infrastructure devices.
NetFlow Tracker provides informa-
tion on all network conversations
passing through the interfaces of supported routers and layer 3 switches,
regardless of network design and can create unique databases that
collect, store, and present valuable usage-based network data reports.
This reporting provides you the visibility into every single conversa-
tion flow, to the per-minute level, up to the last two minutes, on every
router, on every interface, right across your network. NetFlow Tracker
provides complete coverage leveraging an existing data source already
embedded within the network and usually already paid for (Cisco®
Hardware and Cisco® IOS software or other NetFlow and IPFIX enabled
networking devices from world leading manufacturers). When trouble-
shooting problems, the NetFlow Tracker Server can be easily accessed
via a web browser on the OptiView Integrated Network Analyzer in
order to obtain valuable data on router interface, WAN link performance
and usage.

Use NetFlow Tracker to provide answers to many critical questions
about the network, such as:

•	 Exactly	what	makes	up	my	traffic	over	the	WAN?

•	 Who	are	the	users?	

•	 What	applications	are	they	using?	

•	 Who	and	what	are	consuming	the	bandwidth?

•	 How	is	quality	of	service	working?	

•	 Are	network	usage	policies	being	followed?

www .flukenetworks .com73

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

information about how long it takes the ping to travel across

each link.

Most technicians either don’t know or don’t remember the switches

used with trace route. So, OptiView makes trace route an easy-to-

use tool. In addition, it determines the layer two and layer three

routes on a single screen and allows you to move on to router and

switch queries and more. Figure 37 shows a trace route analysis

from OptiView.

Figure 37 OptiView Trace Route

When you find a link that is slow or appears to have a problem

on one of its attached links, you can query the device to look

at the link from the perspective of the switch or router. Later,

we will consider a case study in which solving the problem uses

such queries.

Fluke Networks 74

Guide to Troubleshooting Application Problems

In some cases, the path between the client and the server will

include WAN links. Since these are often provided by a carrier and

have a usage charge associated with them, network architects tend

to buy the minimum bandwidth they think will meet their needs.

However, that can lead to problems if the links create a bottleneck

for traffic moving between a client and a server. Later, we will look

at a case study in which the analysis of the WAN link is used to

solve a problem.

Application Flow Analysis

If your analysis of the path to the server doesn’t unravel a

problem with slow application response and the server statistics

seem to indicate the server is fast enough, you must now suspect

the application. This part of your analysis may involve capturing

traffic going to and from the server. So, we’ll approach it from that

stand point. In a later case study, we’ll show that you can do some

analysis without capturing this traffic.

Capturing the traffic that is flowing between the client and

the server is often called passive testing. This means that the

OptiView must be placed at a point in the path between the client

and the server where it can make a copy of every passing packet.

One method of doing this is to insert a hub (Ethernet repeater)

into the connection. But this is becoming a difficult technique to

implement for several reasons. First, most hubs are 10Mbps half-

duplex devices. Few network links operate at that speed.

www .flukenetworks .com75

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

Second, inserting the hub means disrupting the link to make the

connection. And, third, performance is likely to be degraded by

the fact that it is passing through this 10 Mbps bottleneck.

A better technique is to connect to a switch and then use port

mirroring or port monitoring within the switch. Most Ethernet

switches provide the capability to have the traffic passing in and

out of one port, copied to a second port, where a device like the

OptiView is attached. This is often referred to as a mirror, monitor

or span port. If you are not the administrator of the switch, you

need to have the person who does administer the switch set up

his port.

Another technique is to tap one of the links over which the client-

server traffic is passing. Passive taps for copper and fiber both

exist and are easy to use. However, they involve interrupting the

circuit in order to insert the tap. Once this is done, all traffic

passing through the tap is copied to the tap port where the

OptiView is attached.

Once you have connected to a point where the capture can be

made, you need to establish a filter so that only appropriate traffic

will be captured. You can build this filter based on the protocol

the server is using, the address of the server or nearly any other

characteristic of the traffic passing into and out of the server

application. One easy method to accomplish this is to use the

Discovery Screen shown in Figure 38.

Fluke Networks 76

Guide to Troubleshooting Application Problems

Figure 38 The Discovery Screen

If you highlight the device and select the Filter button, you will

be provided with a screen that looks like the one in Figure 39.

Figure 39 Setting Up a Filter

www .flukenetworks .com77

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

Troubleshooting Intermittent Problems

When intermittent problems occur, most IT professionals turn to packet
capture to diagnose the problem. The OptiView analyzers make it easy to
troubleshoot intermittent problems with advanced triggering and filter-
ing to capture the traffic before, after or around the event occurrence
and ensures the event is captured the first time to avoid doing random
traffic captures that may not contain anything of interest. To capture a
specific event the analyzer must inspect the contents of each packet to
see if it matches a pattern or error message string which is indicative
of the event occurring. The string matching is performed in hardware
in real-time with line-rate gigabit capture to ensure all the relevant
packets are captured – after all, you can’t analyze packets that were
never captured. A total of eight sets of triggers or filters can be defined
to trigger a capture unattended for later analysis, allowing analysis
when you have time, not when the event occurred.

Free String Match

Fluke Networks 78

Guide to Troubleshooting Application Problems

Using OptiView® Protocol Expert

The Integrated Protocol Expert (iPE), which is built into the

portable OptiView analyzer, is a full featured, easy to use, protocol

analyzer. The screen similar to the one in Figure 40 will appear.

Figure 40 The Initial Screen in iPE

This is the overview of protocols and servers seen in the captured

traffic. It shows the protocols used between the client and several

servers and indicates whether issues in performance were detected.

In the illustration you can see that DNS appeared to function well.

However, HTTP issues are evident. By clicking on the Capture tab,

you get a screen like the one in Figure 41

www .flukenetworks .com79

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

Figure 41 The Capture Tab

This shows the details of the packets on the left side of the screen

and a bounce chart on the right side of the screen. The bounce

chart shows the interaction and the time and size of packets in

the interaction. The packet detail on the left is broken into three

sections. The top of the screen shows a listing of the frames as

they were captured. The middle section shows the detailed decode

of the frame highlighted and the bottom section shows both the

ASCII value and the hex value of each byte in order.

From a portion of the bounce chart shown in Figure 42, you can

see the TCP connection being made between port 1080 on the

client and port 80 (HTTP) on the server. It takes 73.193 ms.

Fluke Networks 80

Guide to Troubleshooting Application Problems

Figure 42 The TCP Connection

The first line shows the SYN being sent from the client to the

server. The response is the SYN/ACK (only the SYN is indicated).

We know this is the response because the pair of port numbers is

the same as on the first line. On the third line, the port numbers

are also the same pair, so this must represent the ACK that con-

firms the SYN/ACK. Notice that the client’s reaction time between

line two and line three is only a fraction of the server’s reaction

time between line one and line two.

Additional information about the connections to this server can be

obtained by clicking on the server from the Overview tab. This is

shown in Figure 43.

www .flukenetworks .com81

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

Figure 43 Server Information

The screen that appears will look like Figure 44. It contains a

wealth of information about the exchange between the client

and the server you picked. Here you can look for evidence of poor

server performance, small payload sizes and other issues.

Reporting and documenting

Fluke Networks’ OptiView® Reporter works with the OptiView Integrated
Network Analyzers and Workgroup Analyzers to provide documenting and
trending capabilities from one central location. The OptiView hardware
agents automatically perform detailed device, VLAN and network
discovery, problem identification, and infrastructure device analysis.
This information, in turn, is automatically imported into OptiView
Reporter for reporting, trending, and event notification.

Fluke Networks 82

Guide to Troubleshooting Application Problems

Figure 44 Server Details

Starting from the Overview screen, if you click on the Transactions

tab, you can see all the transactions for a particular server. This is

shown in Figure 45.

Figure 45 The Transactions Tab

www .flukenetworks .com83

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

In Figure 45, you can see almost the entire transaction. On the

bounce chart you see the three-way handshake on the first three

lines. Line four shows the request for the file stylesheet.css. Line

five shows the server returning the requested file.

In the next image, Figure

46, the statistics table

shows a problem. Only

one medium sized packet

was received by the client.

However, the session used

to retrieve that file required

over three seconds.

The bounce chart for that transaction is shown in Figure 47. After

the three-way handshake to open the session, you can see the

request for the file green.gif. When the server doesn’t respond in

three seconds, you can see the second request for the file. One of

two things occurred, either the first request never arrived or the

server application was very slow to respond. Since the response to

the second request was rather quick, you can suspect that the first

request was lost or not processed for some reason.

Figure 46 Slow Server Response

Fluke Networks 84

Guide to Troubleshooting Application Problems

From the Overview screen, you can click on the Issues Tab.

That will display all of the issues that OptiView found in the

connection. In Figure 48 you see a list of retransmissions that

were discovered. As we discussed in the section on TCP operation,

retransmissions will cause the TCP timing algorithm to assume the

link is not robust. As a result it will slow down the rate at which

it offers packets to the connection.

Figure 47 The Bounce Chart for Slow Server

www .flukenetworks .com85

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Troubleshooting Applications

Figure 48 The Issues Tab

Fix the Problem

The third step in our five step process is to fix the problem.

Because there can be a great number of causes, we can only

assume you’ve found it by this time. However, you should know

what single or what few items combined to cause the inadequate

performance of the application. Sometimes this step will be easy.

However, it can be both time consuming and expensive. For

example, it could be as easy as changing the configuration of a

router. On the other hand, you might need a larger server or a

faster WAN link. However, it could also be the application itself

– as we pointed out earlier, TCP routinely operates with 50% or

more overhead, so imagine what is happening when an application

uses minimum length frames of 64 bytes. The MAC frame head-

ers, IP and TCP headers and frame check sequences can occupy

Fluke Networks 86

Guide to Troubleshooting Application Problems

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

46 bytes of the frame, leaving only 18 bytes available to transfer

data. Badly written applications could require thousands of frames

exchanged to complete a single simple transaction.

Validate the Fix

If the problem affected one particular user, spend some time to be

sure the user sees a difference after the problem has been fixed.

If the entire network was down, thoroughly check that all parts

are now up and functioning well. If connectivity to a server

application was the issue, don’t just check connectivity to the

server. Check that the application can be reached by making sure

a complete transaction can occur. If a particular link was slow, run

a series of ping tests over time and check back to make sure that

all of the response times are good. Taking a little extra care after a

fix is made can lead to work time saved because the problem won’t

occur again.

Document the Fix

It’s a very good idea to keep written records of what you fix and to

have the records well organized. This is important to other individ-

uals who may need to fix a similar problem if you aren’t available

to consult. Also, records are necessary for documenting the need

to acquire larger servers or test equipment. Documentation should

include screen shots, notes stored in text documents, spread

sheets with incidents and time on task and a host of other kinds

of documents. What is important is to create a record for your

future referral and for others who may have need of such history.

www .flukenetworks .com87

Troubleshooting Applications

Case Studies
By looking at examples of troubleshooting, we can understand the

methods we’re outlining in this document. Consequently, we will

consider two case studies.

Case Study 1: Obtaining Switch Statistics

Sometimes obtaining the information you need can involve moving

from one building or site to another. Travel time is lost time. So, in

this illustration we see how OptiView can be used to learn about a

link to a server and the configuration of the network at that point.

Let’s say we have a server that is connected to a switch in some

part of the network and users are complaining that the server is

responding slowly. Using the unique layer 2 and layer 3 trace route

techniques described before, we find the path to the server and

the layer 2 switch to which the server is connected. By highlight-

ing that switch and clicking on Device Detail and the Interfaces

tab, we can get the screen shown in Figure 49.

Figure 49 The Switch Interface Screen

Fluke Networks 88

Guide to Troubleshooting Application Problems

From this screen, we can determine which port is connected to

the server, in this case port 9. Then by clicking on the bar graph

button next to View, we can query the switch to get the statistics

on that link to the server. This is shown in Figure 50.

Figure 50 Link Statistics

This allows us to see the utilization and error levels on the link

and even access an RMON history study of the link, if it is enabled

on the switch. Sometimes servers are browsing on a link. If that

is the case, there will be an abnormally high level of broadcast

traffic. Or, you might find that there are errors caused by a

physical link problem such as a defective NIC or bad copper cable.

Being able to see the link without being physically at the switch

provides a considerable savings in time.

www .flukenetworks .com89

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Case Study 2: Investigating WAN Link
Performance

In this case study, we’ll see how the OptiView can be used to

analyze a WAN link that appears to be a bottleneck in the path to

the server. In this scenario, access and performance across a WAN

link has been slow. The service provider is saying that the company

needs an additional T-1 circuit.

In Figure 51 below, we begin with the Device Detail Interface

screen that is similar to the one in Case Study 1. This time we are

querying a router.

Figure 51 Interfaces on the Router

Fluke Networks 90

Guide to Troubleshooting Application Problems

By highlighting the interface with the suspected WAN link, we can

see some of the interface statistics and see that it is, in fact at T-1

circuit running at 1.544 Mbps and that the MTU is 1500 bytes.

This means that IP packets with the standard maximum size of

1500 bytes will not be fragmented in order to traverse the link.

By clicking on the bar graph button next to View. the screen in

Figure 52 is produced.

Figure 52 Utilization of the WAN Link

This screen makes it obvious that the utilization of the WAN link

is only slightly under 50%. This screen is periodically updated,

so you could study it over a period of time to be sure about your

conclusion. As we mentioned before, it would be wise to move

on to an analysis of the server or the application running on

the server.

www .flukenetworks .com91

Guide to Troubleshooting Application Problems

Application Troubleshooting Resource Center:
www .flukenetworks .com/appts

Summary
In this document, we have provided information on how network

applications work. We have discussed the typical sequence for a

client to use when it makes a connection to a server and asks for

a service to be provided. As part of that analysis we considered the

DNS lookup, the role of ARP, how the TCP connection is opened,

how the request is sent and the response is received, and how

the connection is closed. We considered the major categories of

applications such as web applications, database applications and

transaction processing systems. During that explanation we noted

that 90% of the applications are based on the TCP protocol.

In analyzing how the client interacts with the server, we consid-

ered the route to the server and how it can hide problems that

affect performance. We also did a brief tutorial on the operation

of TCP since its operation has such a significant influence on how

well the application appears to perform. We discovered that when

packets are lost in the network, the impact on TCP performance is

significant. This led us to the conclusion that the quality of the

network is very important.

In considering TCP operation, we described the three-way

handshake that is used to create the connection, the method

of assuring reliability of the transfer of data and the four-way

handshake that closes the connection.

Guide to Troubleshooting Application Problems

We moved on to a discussion of a Five Step Process to troubleshoot

applications. We stress that a logical approach would include:

(1) determining the domain of the problem; (2) performing an

application flow analysis; (3) fixing the problem; (4) validating

that the problem is fixed; and (5) documenting that was fixed and

how it was fixed.

Using the techniques suggested in this paper should reduce finger

pointing between your application developers and your network

staff. And, it will increase your success in solving network

problems, reducing costs to your company.

N E T W O R K S U P E R V I S I O N

Fluke Networks
P.O. Box 777, Everett, WA USA 98206-0777

Fluke Networks operates in more than 50 countries
worldwide. To find your local office contact details, go to
www.flukenetworks.com/contact.

©2008 Fluke Corporation. All rights reserved.
Printed in U.S.A. 10/2008 3364967 Rev A

For more information on Network Troubleshooting and Application

Diagnostics visit the Application Troubleshooting Resource Center

at www.flukenetworks.com/appts to request a free 5-day network

analyzer trial, sign-up for upcoming events and download

technical content.

